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Abstract
Time cells are shown to encode the unfolding of time by form-
ing trial-consistent temporal receptive fields that are selective
to particular moments. However, it remains unknown whether
besides carrying temporal information, time cells directly con-
tribute to the cognitive function of timing. Here, by training
deep reinforcement learning (DRL) agents to compare the du-
ration of two sequentially presented stimuli, we show that time
cells naturally emerge and encode time elapsed regardless
of the cognitive demand of timing. Furthermore, the tempo-
ral receptive field of individual cells does not rescale across
different stimulus duration nor discriminates between correct
and incorrect trials, suggesting a dissociation between time
encoding and duration judgment in the DRL agent. Together,
our findings posit that time encoding may emerge as an intrin-
sic circuit phenomenon of recurrent neural networks irrespec-
tive of the cognitive function of timing.
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Time cells are ubiquitously discovered throughout the brain
in multiple mammalian species (Akhlaghpour et al., 2016;
Bakhurin et al., 2017; Cruzado, Tiganj, Brincat, Miller, &
Howard, 2020; C. MacDonald, Lepage, Eden, & Eichenbaum,
2011; C. J. MacDonald, Carrow, Place, & Eichenbaum, 2013;
Schonhaut, Aghajan, Kahana, & Fried, 2022; Tsao et al.,
2018). Yet, it is unknown whether they contribute to the cogni-
tive function of timing. Particularly, Toso et al. (2021) demon-
strated a distinction between time coding and time perception
in the dorsolateral striatum of rats tasked with comparing the
duration of two sequential vibrations (Toso, Reinartz, Pulec-
chi, & Diamond, 2021).

Recently, several studies have shown that recurrent neu-
ral networks could successfully solve behavioral timing tasks
(Deverett, Faulkner, Fortunato, Wayne, & Leibo, 2019; Hardy
& Buonomano, 2018). During the task, the artificial recurrent
units developed time-dependent activity resembling the tem-
poral representations in the brain (C. MacDonald et al., 2011;
Janssen & Shadlen, 2005; Jazayeri & Shadlen, 2015) , sug-
gesting a shared computational principle between the brain
and the artificial neural network for temporal processing. This
motivated us to train DRL agents with hidden recurrent con-
nections on a neuroscience-based timing task and study time
encoding in the recurrent neural network.

We simulated a Delayed Duration Comparison (DDC) task
wherein a location-fixed reinforcement learning agent re-
ceived two visual stimuli of varying length presented sequen-
tially, separated by a fixed-length delay period (Fig. 1A). The
duration of stimulus 1 and stimulus 2 was sampled uniformly
among 7 equally spaced stimulus lengths between 10 sec-
onds and 40 seconds (10, 15, 20, and so on) under the con-
straint that the two stimuli must have different durations. After
stimulus presentation, the agent would make a response to
indicate which stimulus was perceived longer and received a
reward for the correct response. The DRL agent was a deep
neural network with a 512-unit LSTM (i.e. recurrent) module

to process sensory input and an actor-critic module to judge
the utility of the current sensory state and select actions (Fig.
1B). The agent was trained with policy gradient methods. We
recorded the activities from all LSTM recurrent units during
the stimulus presentation phase and the delay phase for the
last 5,000 trials of training.

Figure 1: A) DDC task structure where T1 and T2 denote the
duration of stimulus 1 and stimulus 2, respectively. B) Archi-
tecture of the DRL agent. St represents the sensory state of
the environment at time step t, V (St) represents the agent’s
judgment of the value of the current sensory state, and π(a|St)
selects an action a based on its assessments of action utilities
at the current state St . C) Behavioral performance measured
as the fraction of correctly responded episodes. The solid line
and shaded area represent the average and standard devia-
tion of performance over four agents. D) An example heatmap
showing the hidden state activities during the stimulus presen-
tation phase, averaged across all presentation period where
the stimulus duration is 40 seconds. Each row shows the trial-
averaged activities of a single cell normalized to its minimum
(blue) and maximum (red). Rows are sorted by the latency
to the cell’s peak activity. E) Multi-class logistic regression
decoding of elapsed time since stimulus onset from the popu-
lation hidden state activity at each time step. Heatmap shows
the probability of predicted time plotted against actual elapsed
time, with superimposed blue lines representing the decoded
time with the highest probability estimate.

Results
Time cells emerge from DRL agents optimized on the DDC
task. After training, the DRL agent reliably performed the
DDC task with almost perfect response accuracy (Fig. 1C).
We sorted each cell’s trial-averaged activity by the latency to
its peak activity. We found that individual LSTM cells fire se-
lectively at a particular time elapsed, and the population ac-
tivity of LSTM cells formed a continuous sequence that tiled
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the entire duration of the stimulus presentation period (Fig.
1D), resembling the characteristics of time cells in experimen-
tal studies (C. MacDonald et al., 2011; C. J. MacDonald et
al., 2013). Using multi-class logistic regression, we decoded
the external time elapsed purely from the population activity
of LSTM cells at each time point during the stimulus presen-
tation phase with 99.56% accuracy (Fig. 1E), demonstrating
that LSTM cells encoded the passage of time with high tem-
poral precision during stimulus presentation.

Single unit maintains temporal receptive field regardless
of the actual stimulus duration. To assess by which mech-
anism time cells keep track of the time elapsed, we analyzed
the temporal receptive field of each cell during the stimulus
presentation phase. We found that the vast majority of the
cells were tuned globally to the most prolonged stimulus dura-
tion and did not rescale across different stimulus duration (Fig.
2A), which meant that individual cells maintained their tempo-
ral receptive field regardless of the actual stimulus duration.
It demonstrated that the perception of the stimulus duration
did not affect the temporal tuning of each LSTM unit, which
implied that the LSTM cells tracked the absolute passage of
time independent of the perception of the stimulus duration.

Time cell encoding does not discriminate between cor-
rect and error trials. To further test the hypothesis that time
encoding is decoupled from time perception in the DRL agent,
we examined time encoding and the population activity sepa-
rately for correct and incorrect trials. When trained on pop-
ulation activity at each time step during stimulus presenta-
tion only in correct trials, the multi-class logistic regression
decoder predicted the time elapsed during both the correct
trials and the incorrect trials with comparable accuracy (Fig.
2B), suggesting that the population activity of time cells did
not encode stimulus duration differently on correct versus in-
correct trials. Hence, there was a dissociation between the
temporal information carried by the population activity of time
cells and the agent’s perceptual decision regarding the rela-
tive duration of sensory stimuli. In other words, during stim-
ulus presentation, time cell encoding can be decoupled from
the perceived stimulus duration, which manifest in the agent’s
behavioral choices. Furthermore, the temporal tuning of time
cells at a population level did not differ qualitatively between
correct and incorrect trials (Fig. 2C).

Time cells track time passage regardless of the cognitive
demand of timing. Finally, we reason that if time cells con-
tribute to time perception in DRL agents, their temporal tuning
properties (e.g., temporal resolution) should adapt to the cog-
nitive demand of timing and hence show a privileged repre-
sentation of task-relevant time span (i.e., the stimulus duration
rather than the delay duration). However, during the delay pe-
riod, where the cognitive demand for timing is eliminated, the
trial-averaged activity of LSTM cells still peaked at successive
moments and tiles the entire delay period (Fig. 2D). Remark-
ably, the temporal resolution of time encoding in LSTM cells
did not diminish during the delay, as a multi-class logistic re-

gression decoder achieved perfect accuracy when decoding
the time elapsed from the delay-period population activity at
each time step (Fig. 2E). This suggests that time encoding
may emerge as an intrinsic circuit property of recurrent neural
networks irrespective of the cognitive demand of timing.

Figure 2: A) The temporal receptive field of an example cell.
Each row shows the normalized unit activity averaged across
all trials wherein the corresponding stimulus has the duration
indicated by the x-axis. B) The decoded time plotted against
the actual elapsed time using a multi-class logistic regression
decoder trained only on correct trials. C) The population activ-
ity averaged across all stimulus duration for correct trials ver-
sus incorrect trials. Rows in both panels are sorted according
to the cell’s peak activity during the correct trials. D) The trial-
averaged population activity during the delay phase forms a
continuous sequence. Only cells with a temporal receptive
field other than the beginning or end of the delay phase are
shown. E) Heatmap showing the decoded time during the de-
lay period.

Discussions
In this work, we trained DRL agents on a delayed duration
comparison task and showed a dissociation between the en-
coding of external time elapsed and the perceived stimulus
duration in the hidden recurrent network. Our findings sug-
gest that rather than directly contributing to the cognitive func-
tion of duration perception, time cells serve as an intrinsic cir-
cuit phenomenon to track the unfolding of time. Our modeling
study elucidates the role of time cells for temporal process-
ing in recurrent neural networks trained on behavioral tasks
and provides concrete predictions for future neurophysiologi-
cal studies regarding the role of time cells in time perception.
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