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Abstract
Representational similarity analysis is a versatile method
for comparing high dimensional models and neural
recording data to each other. Here, we introduce a com-
prehensive new set of methods for statistical model com-
parison based on predictions of representational geome-
tries. The inference can handle flexible parametrized
models and can treat both subjects and conditions as
random effects, such that conclusions generalize to the
respective populations of subjects and conditions. With
crossvalidated representational distance estimators and
metric whitened model evaluators, the power for model
comparisons approximates that of likelihood-based infer-
ence, but rank-based model evaluation is also supported.
We validate the inference methods using extensive simu-
lations with deep neural networks and resampling of cal-
cium imaging and functional MRI data. Results demon-
strate that the methods are valid and conclusions gener-
alize correctly. These data analysis methods are available
in an open-source Python toolbox.
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Introduction
A popular method for analyzing representational geome-
tries (Chung & Abbott, 2021; Kriegeskorte & Kievit, 2013;
Kriegeskorte & Wei, 2021; Shepard & Chipman, 1970) is
representational similarity analysis (RSA; Kriegeskorte &
Diedrichsen, 2019; Kriegeskorte, Mur, & Bandettini, 2008; Nili
et al., 2014; Storrs, Kietzmann, Walther, Mehrer, & Kriegesko-
rte, 2021; Walther et al., 2016). RSA is a two step process
(Fig. 1a, b): In the first step, RSA characterizes the represen-
tational geometry by estimating the dissimilarity of each pair
of experimental conditions (e.g. different stimuli), and assem-
bles these in a representational dissimilarity matrix (RDM). An
RDM is computed for the neural population in our brain region
of interest and for each model representation. In the second
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step, each model is evaluated by the accuracy of its prediction
of the data RDM.

Here, we introduce a comprehensive methodology for
statistical inference on models that predict representational
geometries (Fig. 1b). We propose bootstrapping meth-
ods that can statistically support generalization to new sub-
jects, new conditions, or both simultaneously, as required
to support the theoretical claims researchers wish to make.
We extend these bootstrapping methods with crossvalida-
tion to enable inference on flexible models, i.e. mod-
els with parameters fitted to the data. The methodology
is available in a new open-source RSA toolbox in Python
(https://github.com/rsagroup/rsatoolbox).

Methods
Our general approach is bootstrap-wrapped cross-validation,
i.e. we use bootstrapping to estimate the variability of model
evaluations that may be cross-validated to prevent overfitting
(Fig. 1b). For both the cross-validation and the bootstrap, we
can choose whether we apply them across subjects, condi-
tions, or both. Our choice for the cross-validations determines
across which factor(s) the model needs to generalize with the
same parameters. Our choice for the bootstrap determines
how far our statistical inference is meant to generalize.

When both subjects and conditions are bootstrap-
resampled simultaneously, the raw variance estimate is much
higher than the true variance over repeated experiments with
new samples of both subjects and conditions (Fig. 1d, e). We
introduce a correction based on bootstrapping of each factor
separately and both together. The variance decomposition
enables us to estimate the true variance accurately.

Additionally, the choice of cross-validation folds adds
variance to the evaluations, which include cross-validation.
One could remove this variance by performing many cross-
validations, but doing this for each random sample of the
bootstrap would be prohibitively expensive. Instead, we
found a correction formula that allows us to remove this ex-
cess variance accurately with only two cross-validation fold-
assignments for each bootstrap sample.

Applied together, these corrected methods yield accurate
estimates of the (co-)variances of model evaluations. Based
on this (co-)variance estimate we can perform all statistical
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Figure 1: New RSA methods for model evaluation. a: The same set of stimuli or conditions is presented to the models and
to experimental subjects. Recordings of neural activity and feature extractions from the models yield representational spaces,
which are not directly comparable. b: The two-factor bootstrap-wrapped cross-validation. c: A typical model comparison result
with statistical tests marked, here across layers L1-L9 of a deep neural network model. d: Deep neural network based simulation
result: Comparison of the uncertainty estimates obtained with or without correction from the bootstrap against the true variability
of results. The relative uncertainty should be close to 1, the shaded region is the range expected for a perfect method due to the
limited number of simulations. e: As in panel d, but based on the resampling calcium imaging data.

tests we are interested in as t-test variants (Fig. 1 c).

Results
We thoroughly validate the new inference methods using sim-
ulations and neural activity data. Extensive simulations based
on deep neural network models and models of the measure-
ment process, where ground truth is known, confirm the valid-
ity of the inference procedures and their ability to generalize to
the populations of subjects and/or conditions. Using real data
from fMRI (human) and calcium imaging (mouse), we con-
firm that conclusions generalize from an experimental data set
(subset of real data) to the entire data set (which serves as a
stand-in for the population). In all simulations we used the rel-
ative uncertainty, i.e. the ratio of estimated standard deviation
σboot and true standard deviation σtrue as the criterion, which
should be close to 1.

In both DNN based simulations (Fig. 1d) and resampling
based simulations (Fig 1e), we found that our corrected two-
factor bootstrap method yields accurate estimates of the vari-
ance across the simulated populations of subjects and con-
ditions when the dataset is large enough (≥ 20 subjects, ≥
40 conditions) and the type of bootstrap matches the desired
level of generalization.

To test our method for inference on flexible models, we
made a variant of the deep neural network simulation in which
we assume that the size of the voxels’ averaging pools and
the weighting of features are unknown to the researcher and
need to be fitted to the data.

We found that our bootstrap-wrapped crossvalidation with
the two-factor bootstrap and the excess-variance correction
yielded accurate estimates of the uncertainty (not shown).
The relative uncertainties were close to 1. Furthermore, flexi-
ble models that allowed fitting of the measurement model ac-
curately selected the underlying representational model, while
fixed models that ignored the unknown degree of pooling in
voxels could lead to consistently incorrect inferences and/or
low model discriminability.

Conclusion
We present a comprehensive new methodology for inference
on models of representational geometries that enables neuro-
scientists to draw conclusions that generalize to new subjects
and conditions, can handle flexible models, and is more pow-
erful than previous approaches. The validity of the methods
has been established through extensive simulations and us-
ing real neural data.
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