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Abstract:
The brain adapts to the statistical regularities of the 
environments to improve behavior. While there are many 
theories of efficient coding for feedforward processing, 
little is known about how prior information is encoded 
through recurrent computation in the neural systems, 
which is critical for cognition. Here we investigate this 
question in the context of working memory. By 
optimizing recurrent neural networks (RNNs) to perform 
a working memory (WM) task with different noise levels
and stimulus priors. We found that, with increasing 
neural noise, the attractor dynamics in RNNs transform 
from continuous to discrete. Moreover, to encode 
stimulus statistics, RNNs generally allocate more 
attractor states for more frequent stimuli, leading to an 
increased encoding precision. The resulting neural 
representations exhibit systematic deviations from 
previous theories of efficient coding. Our results reveal 
novel mechanistic insights into how prior information is 
encoded through recurrent computations.
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Introduction
The efficient coding hypothesis (Barlow, 1961) proposed 

that the brain should adapt to the statistical properties of the 
environment to optimize information transmission. While 
there are many theories on how noisy neural representations 
should optimally encode the stimulus (reviewed in 
Kriegeskorte & Wei, 2021; Simoncelli & Olshausen, 2001), 
previous studies mainly addressed optimal representations
problems in feedforward processing with a focus on a static 
view. However, cognition often involves holding or 
integrating information over time, which requires recurrent 
computation. The recurrent computation may impose 
constraints on the efficient processing, leading to different 
efficient optimal coding solutions (Bredenberg & Simoncelli, 
2020). So far, this remains an open problem. 

We investigate this question by studying how working 
memory (WM) systems should best adapt to the stimulus 
statistics. Previous research suggested that WM incorporated
prior information about stimuli statistics for inference 
(Honig et al., 2020; Panichello et al., 2019). Here we optimize 
RNNs to solve a WM task and study how RNNs solve it. It 
could provide new understandings of how noisy working 
memory systems could optimally encode stimulus prior.

We found the trained RNNs generally allocate attractor 
states according to stimulus prior. Furthermore, neural noise 

promotes the RNNs to develop discrete attractors to achieve 
a better bias-variance tradeoff. Our results lead to novel 
predictions of WM at the levels of neural representation, 
network mechanisms, and behavioral characteristics.

Method
We trained RNNs to perform the delay estimation task (Fig 

1). The network activity 𝒓 follows a dynamical equation: 𝜏 d𝐫d𝑡 ൌ െ𝐫 ൅ 𝑓 ቀ𝑊୰ୣୡ𝐫 ൅𝑊୧୬𝐮 ൅ 𝐛 ൅ ඥ2𝜏𝜎୰ୣୡଶ 𝝃ቁ ሺ1ሻ
where 𝐮 is the input to the network, 𝐛 is the bias, 𝝃 are

independent Gaussian noise processes with zero mean and 
unit variance and 𝜎௥௘௖ is the strength of the noise, and 𝑓ሺ∙ሻ is
a nonlinear Sigmoid activation function. We implemented 
the time-discretized version of Eq (1) with𝑁௥௘௖ = 128 units,d𝑡 = 75ms and neuronal time constant 𝜏 = 100ms. 

The stimuli orientation 𝜃 is encoded with an array of 
orientation-selective neurons with von Mises (circular 
Gaussian) tuning curves. The output of the RNN is a linear 
readout of the recurrent units. The loss function is computed 
by the mean squared errors between the network output and 
the true stimulus. We impose L2 regularizations on recurrent 
weights and rates to mimic biological resource constraints. 

Fig. 1 Working memory task. The agents remember the 
orientation of the bar when stimulus presents, then maintain 
the memory and reproduce the memorized orientation.

Results
Continuous v.s. discrete attractors

We trained RNNs to perform the WM task under different 
noise levels and delay lengths. We found low-dimensional 
neural dynamics in our trained RNNs (Fig. 2a, g). The neural 
dynamics resemble a continuous ring attractor (Burak & 
Fiete, 2012; Compte et al., 2000) when the effective neural 
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Fig. 2 RNNs under low and high noise trained with data from a von Mises distribution centered at 0 deg and tested with data 
from a uniform distribution. a, g) Neural activities in the 2D subspace defined by the first two principal components of PCA.
(Variance explained, a: 77%, g: 93%.) red: stimulus presents; blue: delay period; green: probe phase; black: fixed points. b, h)
Recurrent weights matrix. c, i) Behavioral bias as a function of the stimulus. d, j) Representational distance as a function of 
stimulus disparity. e, k) Distribution of reported memory. f, l) Fisher information of stimulus representations.

noise is small (Fig. 2a). 
Interestingly, with increased noise or length of the delay 

period during training, the resulting RNNs exhibit more 
discrete attractors (Fig. 2g, k). This suggests that RNNs learn 
to store memories with finite stable states to mitigate noise. 
The discrete solution makes the WM representation robust at 
the cost of introducing biases in memory. Overall, the RNNs
solve the optimal bias-variance tradeoff and generate an 
increasingly more discrete solution with increased noise. 
Mechanisms of encoding prior information

To understand how RNNs encode a non-uniform prior, we 
trained them to remember stimuli generated from a von
Mises distribution centered at 0 deg and test them with 
uniform data. We found that RNNs leverage stimulus 
statistics in training data to optimize behaviors. The squared 
error of the more frequent stimuli is significantly smaller than
the less frequent stimuli in most RNN and task settings.
However, the error exhibits a complex pattern at a finer scale. 
It is not inversely proportional to the prior density of the 
training stimulus (Fig. 2c, e, i, k), as predicted by previous 
efficient coding theory (Wei & Stocker, 2015). This pattern is
due to the discreteness of the solutions, as each attractor 
could induce characteristic bias-variance patterns locally.

We identified the fixed points (Sussillo & Barak, 2013) and 
visualized them in the 2D state space (Fig. 2a, g). We found 
that the attractors concentrate on the most frequent stimuli. 

This pattern is also reflected in the bias (Fig. 2c, i) and the 
distribution (Fig. 2e, k) of reported memory. We then 
examined the representational geometry (Kriegeskorte & 
Wei, 2021) of different stimuli by quantifying the 
representational distance from one stimulus orientation to all 
other orientations. Our result shows that the more frequent 
stimuli have more distance from other stimuli (Fig. 2d, j) and 
tend to have larger Fisher information (Fig. 2f, l). Both results
suggest that the representations of more frequent stimuli 
have better discriminability.

Discussion
Our results suggest that the noisy recurrent circuits could 

adapt to the stimulus statistics and noise by flexibly 
distributing the attractor states. The behavioral pattern of our 
trained RNNs is reminiscent of experimental reports on a 
similar WM task (Bae et al., 2015; Honig et al., 2020; 
Panichello et al., 2019).

Our model leads to multiple novel predictions. One such 
prediction is that the behavioral output will be heavily biased 
toward the discrete attractors, even when the prior is uniform. 
This prediction deviates substantially from previous efficient 
coding theories (Brunel & Nadal, 1998; Wei & Stocker, 2015).
To this end, our work highlights the importance of explicitly 
incorporating circuit constraints when formulating 
normative theories of brain function.
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