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Abstract

How does language mediate brain-to-brain coupling dur-
ing face-to-face communication between speakers and
listeners? Here, we explore whether the embedding
space learned by deep language models can serve as a
common linguistic intermediary for aligning brains dur-
ing communication. We recorded real-world, face-to-face
conversations in five dyadic pairs of electrocorticography
(ECoG) patients. This unique setup allows us to model
how a speaker encodes and transmits their thoughts to a
listener during free-form conversations. Our findings re-
veal the temporal profile of information flow across brains
during conversation: linguistic content emerges in the
speaker’s brain before word onset and is recapitulated
in the listener’s brain rapidly following word onset. This
transmission process relies on a shared linguistic em-
bedding space for translating internal states from one
brain to another.
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Introduction

Language allows us to describe our experience of the world
and share our thoughts with others. Communication, however,
relies on a shared agreement as to the meaning of words in
context. This shared agreement varies across cultures and
contexts; for example, in the context of chess, the word game
is associated with a particular set of rules; in the context of a
playground sandbox, the word game is associated with open-
ended creative play. The way we use words is grounded in a
shared code that all speakers in a community participate in.
Despite the importance of this agreement on shared con-
textual meaning, most studies of the neural basis of lan-
guage processing have been constrained to studying single
speakers in isolation (Pickering & Garrod, 2004; Hasson &
Honey, 2012). The vast majority of these studies cannot
speak to the spontaneous, contextual, and communicative
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nature of real-world dialogue. These limitations have led
the community to push for the use of naturalistic language
stimuli (Hasson, Ghazanfar, Galantucci, Garrod, & Keysers,
2012; Hamilton & Huth, 2020) and interactive “brain-to-brain”
paradigms (Redcay & Schilbach, 2019).

The lack of shared, context-sensitive language models has
hindered attempts to formally model the neural coupling be-
tween interlocutors. To overcome this limitation, intersubject
correlation (ISC) analyses were developed to model the neu-
ral activity of one brain (e.g., a listener) based on the neural
activity in another brain (e.g., a speaker) (Stephens, Silbert,
& Hasson, 2010; Bevilacqua et al., 2019). ISC analyses by-
pass the shared meaning between interlocutors and cannot
capture the linguistic content and context that drives brain-to-
brain coupling in particular conversations.

In this paper, we tested whether we can use the embed-
ding space derived from a recently-developed deep language
model (DLM) as a shared linguistic intermediary for brain-to-
brain coupling during natural conversations. DLMs learn the
statistical structure of language from the way humans use lan-
guage in real-world contexts. These models encode words
in a high-dimensional embedding space that captures the
shared, context-sensitive structure of language (Linzen & Ba-
roni, 2021) and share important computational principles with
human language processing (Schrimpf et al., 2021; Goldstein
et al., 2022).

Results

We collected ECoG data in five dyads during real-time, free-
form conversations. For each dyad, we spliced the neural
data into word-level epochs, collated these epochs according
to speaker and listener roles, and split the collated data for 10-
fold cross-validation. We used time-resolved transcriptions of
each conversation to extract embeddings for each word from
the large language model GPT-2 (Radford et al., 2019). We
estimated encoding models for the speaker and listener to
predict the neural activity for each word using the embeddings
from GPT-2 (Fig. 1A).
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Figure 1: (A) Modeling speaker-listener linguistic coupling using a shared language model. (B) Speaker (blue) and listener (red)
encoding performance at five lags relative to word onset for all electrodes and subjects. (C) Linguistic coupling between speaker
and listener across multiple regions of interest. (D) Time-resolved linguistic coupling between somatomotor electrodes in the

speaker and superior temporal electrodes in the listener.

Word Embeddings Predict Brain Activity in Both Speaker
and Listener We first assessed whether the linguistic em-
bedding space can capture time-resolved, word-related neu-
ral activity in both speaker and listener. We trained en-
coding models with 10-fold consecutive cross-validation and
measured the correlation between actual and predicted word-
related activity in each test fold at lags ranging from -2000 ms
to +2000 ms relative to word onset (Fig. 1A). For the speaker,
we found that encoding performance peaks before word onset
in somatomotor and inferior frontal electrodes and quickly de-
creases after 500 ms post-word-onset (Fig. 1B, blue). For the
listener, encoding performance increases gradually at word
onset and peaks at roughly 250 ms post-word-onset in supe-
rior and anterior temporal electrodes (Fig. 1B, red). These re-
sults demonstrate that the linguistic embedding space learned
by GPT-2 captures relevant features for predicting neural ac-
tivity during both language production and comprehension.

Brain-to-Brain Linguistic Coupling How are the speaker
and listener’s brains aligned during the conversation? The
previous analysis used the encoding models to predict the
neural signal from word embeddings. This “encoded” signal—
i.e. the model-based predictions of neural activity—captures
linguistic features of the neural signal within each brain. To
assess linguistic coupling across brains, we directly corre-
lated the predictions of the speaker’s encoding model to the
listener’'s encoding model at varying regions (Fig. 1A, purple).

We found widespread, asymmetric inter-regional speaker-
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listener coupling between the speaker’s articulatory system,
including the inferior frontal gyrus (IFG), precentral gyrus
(preCG), and postcentral gyrus (poCG), and the listener’s su-
perior temporal (ST) language areas, as well as higher-level
supramarginal and inferior frontal areas (Fig. 1C).

We further investigated the temporal profile of the cou-
pling between the speaker’s articulatory regions in somato-
motor cortex and the listener’s superior temporal language ar-
eas. We repeated the same encoding analysis and correlated
the predictions of each encoding model for every pair of lags
to obtain a time-resolved, lag-by-lag correlation matrix. We
found that the linguistic features of the speaker’s pre-word-
onset activity in somatomotor cortex best modeled the linguis-
tic features of the post-word-onset responses in the listener’s
superior temporal cortex (Fig. 1D).

To ensure that the model-based speaker-listener coupling
was driven by the linguistic structure of the DLM embedding
space, we performed a control analysis using “arbitrary” em-
beddings. We generated random embeddings for each word
and reran the lag-by-lag inter-subject encoding analysis. The
random embeddings only capture the occurrence of individ-
ual words and do not contain the context-sensitive linguistic
structure of the DLM embeddings. These control embeddings
explained only a small proportion of variance in comparison to
the linguistic embeddings. We also found that shuffling model
predictions between dyads attenuates coupling; i.e. the cou-
pling of each dyadic conversation is unique.



Discussion

In the current work, we use a DLM embedding space to iso-
late shared linguistic features linking the brain activity between
speakers and listeners in real-world conversations. This is one
of the first attempts to model context-dependent, word-level
neural activity during free, spontaneous conversations. While
previous work has described speaker-listener neural coupling
during storytelling (Silbert, Honey, Simony, Poeppel, & Has-
son, 2014), the current work leverages a shared language
model to capture linguistic coupling between brains. Our re-
sults reveal time-resolved linguistic coupling between speaker
and listener: shared word- and conversation-specific linguis-
tic features emerge in the speaker’s language-production ar-
eas before word articulation, and later, post articulation, re-
emerge in the listener’s comprehension areas.

The current conversational “hyperscanning” dataset allows
us to model brain activity simultaneously in both the speaker
and listener. Our comprehension result (Fig. 1B, red) repli-
cates previous work examining the temporal dynamics of lin-
guistic encoding using DLM embeddings in a naturalistic spo-
ken narrative (Goldstein et al., 2022). Our results expand on
this work in two ways. First, we demonstrate that DLM em-
beddings also capture linguistic features of neural activity in
the speaker—prior to word onset in articulatory cortical areas
(Fig. 1B, blue). Second, the dyadic, conversational nature of
our dataset allows us to map from the linguistic features of
neural activity in the speaker to linguistic features of neural
activity in the listener on a time-resolved word-by-word basis.

Acronyms:  Superior temporal (ST); Supramarginal
(SMAR); Postcentral gyrus (poCG); Precentral gyrus
(preCG); Inferior frontal gyrus (IFG); Rostral middle frontal
(RMF); Inferior temporal (IT).
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