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Abstract:

Variational autoencoders (VAE) have received 
significant attention from the deep learning and 
neuroscience communities as the VAE is able to 
find meaningful low-dimensional latent represent-
ations from high-dimensional data. Although the 
VAE was originally developed as an unsupervised 
learning algorithm, recent advances in the VAE 
allow us to use it in a semi-supervised manner (e.g., 
conditional VAE). These new advances allow 
neuroscientists to condition the VAE on their 
experimental variables and identify the condition-
free low dimensional representations. Here, we 
trained conditional VAEs to model brain responses 
to different levels of noxious heat stimulation with 
a functional Magnetic Resonance Imaging (fMRI) 
dataset (total N = 124). By conditioning the data on 
different levels of heat intensity, we extracted the 
condition-free low-dimensional latent variables 
with training and validation data (n = 87). Then, we 
were able to generate brain responses for any 
given conditions (i.e., heat intensity) from no-pain 
data in a test dataset (n = 37). Further analyses 
revealed that the condition-free latent variables 
can identify different individuals with high 
accuracy, suggesting that the latent variables 
contain idiosyncratic fMRI features of each 
individual. Overall, we show that the conditional 
VAE can model the effects of heat intensity as well 
as individual variability, providing a powerful 
analysis strategy both for population-level and 
personalized pain neuroimaging.  

Keywords: variational autoencoder, pain, fMRI 

Conditional VAE for fMRI 

Finding meaningful low-dimensional representations of 
neural population activity is one of the major goals in 
neuroscience. In functional Magnetic Resonance 
Imaging (fMRI) studies, linear dimensionality reduction 
methods, such as PCA and ICA, have been the most 
popular strategies to find the low-dimensional neural 
representation. However, these methods depend only 
on linear relationships among variables and cannot 

leverage experimental condition information. Recent 
advances in deep learning have created a new 
opportunity to identify low-dimensional 
representations using non-linear generative models. In 
particular, a variational auto-encoder (VAE) is currently 
receiving significant attention from multiple fields 
(Kingma & Welling, 2013). Mathematically, the VAE can 
be viewed as a non-linear ICA or a probabilistic PCA 
when it uses a linear activation function (Khemakhem 
et al., 2020; Lucas et al., 2019; Rolinek et al., 2019; 
Zietlow et al., 2021). More importantly, the VAE can 
also be trained in a semi-supervised manner (Kingma 
& Mohamed, 2014). For example, the conditional VAE 
(cVAE) can incorporate condition information into the 
training of generative models (Sohn et al., 2015). The 
cVAE does not only allow us to identify condition-free 
low dimensional representations of neural activity, but 
also generates and predicts neural activity for different 
conditions (Lim et al., 2018). Overall, the cVAE has the 
potential to identify meaningful low-dimensional 
representations of brain activity in response to different 
levels of painful stimulation.  

Methods 

Pain fMRI dataset. We collected an fMRI dataset (total 
N = 124) with a simple pain task design, which 
consisted of a pre-stimulus period (3~5s), pain 
stimulation (12s), and pain rating (5s) within one trial 
(Fig. 1a). We used six different levels of heat stimulus 
intensity (45.0 to 47.5°C with 0.5°C increment). For 
each participant, we delivered heat stimulation 96 
times (i.e., 96 trials). We divided the data into training 
(n = 79), validation (n = 8), and test sets (n = 37). All 
results in Fig. 2 are the results of test sets. 

Conditional VAE. The cVAE consisted of encoder and 
decoder parts. In the training step, the condition 
variable (here, heat stimulus intensity) was used to train 
the encoder and to extract condition-free latent 
representations from fMRI data. This condition variable 
was used in the decoder part to generate the condition-
dependent data, which is the original fMRI data (Fig. 
1b). Then, the trained cVAE can be used to generate 
new brain maps from unseen data and different 
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condition variables, allowing us to test whether the 
cVAE model successfully extracts the condition-free 
low dimensional features from the data. Lastly, we can 
further analyze the model to better understand the low-
dimensional latent space.  

 
Fig. 1. (a) Experiment design and (b) conditional VAE 
model structure.  

Results 

Training and testing cVAE model: As shown in Fig. 
2a, we first obtained the group-level contrast map for 
the heat level 6 versus 1 using the raw fMRI data. For 
thresholding, we used the false discovery rate 
correction q < 0.05 for multiple comparisons. In 
addition, we conducted the term-based decoding with 
a large-scale meta-analysis database, Neurosynth, to 
examine whether the results are sensible, which is 
shown as a wordcloud in Fig. 2a.  

Then, we obtained the group-level contrast map for 
the heat levels 6 versus 1 based on the cVAE generated 
fMRI data using the actual fMRI data of levels 6 and 1 
as inputs (Fig 2b).  

Lastly, we obtained the group-level contrast map for 
the heat levels 6 versus 1 based on the cVAE generated 
fMRI data using the fMRI data from the pre-state period 
(i.e., no-pain condition) as inputs (Fig. 2c). All three 
conditions generated sensible Neurosynth decoding 
results, e.g., sensorimotor-related terms and also pain.  

Figure 2. Group-level contrast maps. (a-c) The 
contrast maps of three conditions with FDR correction 
(q < 0.05). Color bars indicate t-values. The wordcloud 
shows the Neurosynth decoding results of each map. 

The sizes of the word represent the relative sizes of 
correlation values. The top five words are in red. All 
results are from the test dataset (n = 37). (d) The UMAP 
visualization of test data (n = 37) on the latent space 
(1024 dimensions). Different colors indicate different 
individuals. (e) The PCA visualization of the data on the 
latent space of VAE (1024 dimensions) trained without 
condition. Different colors indicate different individuals, 
and the color gradient represents stimulus intensities. 

Analysis of low-dimensional latent space: We further 
analyzed the low dimensional representations learned 
by the cVAE model and found clustering of individuals 
when we visualized the data with  the Uniform Manifold 
Approximation and Projection (UMAP) (Fig. 2d). This 
result is consistent with a previous study (Kim et al., 
2021), which reported that the VAE is better at the 
individual identification compared to PCA or ICA.  

VAE model without conditions: To further understand 
the low-dimensional latent variables from the VAE 
models, we trained an additional VAE without 
conditions and compared them to the cVAE results. 
Similar to the cVAE results, the VAE also showed the 
individual clustering, but within each individual cluster, 
we were able to observe the stimulus intensity 
information (Fig. 2e).   

Conclusion 

In this study, we successfully applied the cVAE to 
obtain condition-free low dimensional latent represent-
ations of brain response to painful heat. The cVAE was 
able to generate similar brain responses for any given 
conditions for unseen data. However, the condition-
free representations still contained individuals’ 
idiosyncratic features. This suggests the possibility of 
using cVAE to model both the effects of heat intensity 
and individual’s unique features. Overall, this study 
provides a powerful data analysis strategy both for 
population-level and personalized pain neuroimaging. 
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