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Abstract
The perception of sensory stimuli is frequently variable.
Previous studies have shown that observers account for
uncertainty arising from internal variability when they
combine sensory cues, integrate sensory input with prior
expectation, or select actions under externally imposed
cost functions. But how does the distribution of internal
uncertainty shape free perceptual report? Behavioural
models have assumed that unitary percepts may reflect
means, modes or samples of internal belief distributions.
Here, we show that observers’ reconstructions of the re-
membered orientation of a visual grating correspond to
means of the variability-induced likelihood, not the mode
or a random sample. This behaviour remains robust as
either the distribution of stimuli, or the degree of inter-
nal variability, change. These observations suggest that
variability arises in encoding or recall, and is accurately
taken into account at the point of perception or action.
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Task and behaviour
Human participants (n=48) were presented with a pair of cir-
cular visual gratings with orientations sampled independently
from the same distribution defined on [−π

2 ,
π

2 ). The gratings
remained visible for 0.5 s, followed by a blank screen for 2 s,
and then a 0.5 s-long cue (a dot at the position of one of the
two gratings) to indicate which stimulus was to be recalled.
After another 2 s blank, a new grating appeared in the cen-
tre of the screen. Participants rotated this grating to match
the orientation of the cued stimulus, submitting a response by
pressing the space bar (Wolff, Jochim, Akyürek, Buschman,
& Stokes, 2020). They received no feedback. Normalised
joint histograms P(R,S) of cued sample orientations S and
responses R are shown in Fig 1B and Fig 1E (uniform and
von-Mises distribution of S, respectively). Marginal distribu-
tions of S are shown in blue and of R in yellow. The correlation
between the participants’ response and the uncued stimulus
was close to 0. Responses displayed a characteristic pattern
of bias and variance around the sample: variance was tight-
est near the cardinal directions, but small tilts away from the

1This work was jointly supervised by these authors.

cardinal axes were systematically exaggerated in recall. Oth-
ers have speculated on the origin of the bias (Taylor & Bays,
2018). Here, we looked at how the pattern of responses could
reveal the decision rule adopted by the participants.

Mapping from belief to action

We use capital letters for random variables; lower case for re-
alisations; p(·) for true distributions, and q(·) for participants’
beliefs. Forms like p(R = r | S) or p(r | S) should be read
as functions of the capitalised random variable, here ranging
over the values of S for fixed r. Ep is the (circular) mean of p.

Consider a model in which the cued stimulus S is recalled in
a noisy internal representation X , which informs the response
R. The row of the joint histogram in Fig 1B corresponding to

Figure 1: A - Task schematic. B,E - Joint and marginal data
distributions. C - Schematic of different decision rules. D,F,G
- Model errors from different decision rules.

526
This work is licensed under the Creative Commons Attribution 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



response r is the likelihood p(r | S), an unnormalised distri-
bution over S. Although we do not have direct access to the
internal variable X , we can use the pattern of these likelihood
functions to test plausible relationships between X and R.

Deterministic mappings from X to R. Consider first the
possibility that X maps one-to-one to R. In this case, each
row p(R = r | S) corresponds to a unique internal likelihood
p(X = x | S). We assume that participants adopt a prior q(S)
and choose a response based on the posterior q(S | x) ∝

q(S)p(x | S). The question is how this choice is made. Con-
sider the belief qr(S | x) derived from the R = r row of the
joint histogram. A consistent choice function must be one
that maps qr(S | x) 7→ r. We evaluated two proposed rules
(Wei & Stocker, 2015) by finding the (circular) means and
(smoothed) modes of the inferred distributions (also see Fig
1C). We first considered likelihoods derived from the uniform
sample distribution (Fig 1B), assuming a uniform internal prior.
Fig 1D shows the differences between the two statistics and
the corresponding participants’ response (with bootstrapped
99% confidence intervals). Responses were consistent with
the means. In the second experiment (Fig 1E), we saw scant
evidence that participants incorporated the non-uniform sam-
ple distribution (blue histogram). Performance throughout the
experiment remained consistent, suggesting a lack of learn-
ing. Neither the means nor modes of posteriors based on
the veridical prior matched behaviour (Fig 1F). By contrast,
means (but not modes) of posterior distributions under an as-
sumed uniform q(S) predicted responses (Fig 1G). Note that
this agreement arises despite substantial asymmetry in re-
sponses. Neither mean nor mode of P(R | s) equals s.

Stochastic mappings from X to R. The mean consistency
property also holds when mean-based percepts are corrupted
by homogeneous zero-mean motor or response noise. Con-
sider an idealised histogram p(R̂,S) without such noise, with
Ep(S|r̂) = r̂. Response noise leads to rows of this idealised
histogram being mixed together in the observed p(R,S) with
weights given by the noise distribution p(R|R̂). As long as
Ep(r | R̂) = r, the mean-mapping property will be inherited.

Another plausible stochastic rule is posterior sampling: R ∼
q(S|X). Fig 2A,B shows that this model implies a core sym-
metry in p(R,S), possibly broken if the subjective prior q(S)
does not match the veridical p(S). Clearly the observed his-
togram is far from symmetric. Rewriting this relationship in
matrix form after discretisation, we obtain a solution for the
prior q that brings the core component closest to symmetry
(Fig 2C). Fig 2D shows the asymmetric part of the resulting
core matrix, which clearly contains non-zero residuals near
vertical and horizontal. We conclude that there is no prior that
would allow posterior sampling to explain these data.

Consistent mappings with changing distributions. In a
third experiment we removed the separate positional cue, in-
stead indicating which stimulus was to be recalled by the loca-
tion of the response grating. The delay between sample and
response was randomised. Comparing responses on short

delay trials (<2 s) to those on long delay trials (>4 s), we
found that response dispersion and bias changed with de-
lay, particularly around vertical (Fig 2E,F). This suggests that
p(X |S) changes with delay. However, responses agreed with
the row-defined means regardless of delay (Fig 2G). Thus, the
change to X over time must be such that the X 7→ R mapping
maintains distributional consistency, suggesting that the rep-
resentation carries distributional information.

Conclusion

We find that, when performing a continuous orientation recall
task, participants report the mean of the likelihood associ-
ated with a variable remembered representation, rather than
its mode or a random sample. This behaviour is maintained
with delay even as the pattern of variability changes, suggest-
ing that the representation itself may carry rich distributional
information.
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R ∼ q(S|X)

⇒p(r,s) =
∫

dX q(S = r|X)p(X |S = s)

=
∫

dX
q(S = r)p(X |S = r)∫

dSq(S)p(X |S)
p(X |s)p(s)

⇒Prs = Qr(M⊤Qx
−1M)Ps

⇒Q−1
r Prs symmetric (for uniform Ps)

min∥Q−1
r Prs −P⊤

rs Q−1
r ∥

⇒Diag(Qr) =
(
(P⊤P)◦ I −P⊤ ◦P

)−1 · 1⃗

A

q̂(
S=

r)

Estimated prior

Figure 2: A - Analytic expression for the optimal prior for poste-
rior sampling. Coloured boxes define discretised representa-
tions of distributions. B - Schematic of the generative process
and model. C - Optimal prior. D - Residuals with the optimal
prior. E,F - Joint and response distributions for different de-
lays. G - Mean decision rule errors for different delays.
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