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Abstract: 
Cognitive maps represent relational structures and are 
taken to be important for generalization and optimal 
decision making in spatial as well as non-spatial 
domains.  While many studies have investigated the 
benefits of cognitive maps, how these maps are learned 
from experience has remained less clear. We introduce a 
new graph-structured sequence task to better 
understand how cognitive maps are learned. Participants 
observed sequences of episodes followed by a reward, 
thereby learning about the underlying transition 
structure and fluctuating reward contingencies. 
Importantly, the task structure allowed participants to 
generalize value from some episode sequences to 
others, and generalizability was either signaled by 
episode similarity or had to be inferred more indirectly.  
Behavioral data demonstrated participants` ability to 
learn about signaled and unsignaled generalizability with 
different speed, indicating that the formation of cognitive 
maps partially relies on exploiting observable similarities 
across episodes. We hypothesize that a possible neural 
mechanism involved in learning cognitive maps as 
described here is experience replay.  
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Cognitive maps for generalization and 
planning 

The ability to generalize is essential for flexible decision 
making. It is often hypothesized that generalization 
relies on building a cognitive map (Behrens et al., 2018) 
that reflects knowledge about both spatial and 

non-spatial relational structures (O’Keefe & Nadel, 
1978; Wu et al., 2020). Cognitive maps support value 
learning and generalization which in turn allows flexible 
planning and optimal decision-making (Liu et al., 2021). 
Together with factorized representations – the 
characterization of task structure along independent 
dimensions (e.g., position and context) – cognitive 
maps might build the basis for flexibly recombining 
knowledge in novel ways (Behrens et al., 2018). Here, 
we developed a new graph structured sequence task to 
gain a better understanding of the emergence of 
factorized structural knowledge over time.  

Experimental Design & Behavioral Results 

We designed an episode sequence task (Figure 1), 
which required participants to infer an underlying 
structure to make optimal decisions. Our task consisted 
of 4 sequences of episodes which lead to two slowly 
drifting probabilistic rewards: three sequences lead to 
the same reward (common, R1 in Fig 1), whereas one 
sequence leads to a different reward (rare, R2). 
Furthermore, two of the three common sequences 
consisted of perceptually similar items of the same 
categories (A1 & A1*, B1 & B1* etc., see light orange 
sequences in Fig 1), while the remaining two sequences 
(one common, one rare) were composed of unrelated 
items (E1 through L4). This structure enabled 
participants to generalize values across the two 
sequences that share an underlying categorical 
structure (e.g., A1 and A1*), or across sequences that 
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share a common reward but do not share a categorical 
structure (e.g., A1 and E1). Participants learned from 
standard trials in which they experienced different 
sequences and the associated outcomes (e.g., 
A1>B2>C3>D4>R1, see Fig 1A). To test whether 
participants utilized knowledge about the relational 
structure of the task, they were repeatedly presented 
with decision trials that allowed them to switch from one 
episode sequence to a different one, thus potentially 
reaching a different outcome. In value generalization 
trials (Fig 1B-C), participants would start from a 
sequence leading to the common reward, and had to 
decide between two sequences that either led to the 
common or the rare outcome after one step. In close 
generalization trials (Fig 1B), participants were offered 
a sequence with shared categories (going from 
A1>B2*), versus the rare reward option (A1>J2). In far 
generalization trials (Fig 1C), the unrelated sequence of 
the common reward (A1>F2) had to be compared with 
the rare reward sequence (A1>J2). In value trials, 
participants started in the unique sequence of the 
common reward and could switch to either a different 
sequence of the common reward or to the rare reward 
sequence. Finally, in position trials (Fig 1D) different 
sequence positions of the same common outcome 
sequence were offered, such that only ordinal 
sequence position was relevant for the decision, 
independently of reward and category membership. We 
analyzed the proportions of correct choices for the 
different choice trials, which reflect participants 
knowledge about different levels of generalizability, i.e., 
near generalization to episodes from the same 
category, far generalization to episodes of the different 
category and position-based generalization. Behavioral 
data demonstrate the participants learned to leverage 

all levels of generalizability, thereby quickly adapting to 
the fluctuating reward contingencies. Knowledge of 
near generalization was apparent earlier than 
knowledge of far generalization.   

Conclusions 

These results shed light on the factors that drive 
learning of environmental structures, which can be 
leveraged to support decision making. A main 
implication is that learning of cognitive maps is 
enhanced by observable similarities but also includes 
inferred relationships. We speculate that a possible 
neural substrate for establishing the structural 
knowledge as described here is experience replay 
(Wittkuhn et al., 2021, 2022). According to this idea, 
replay goes beyond the application of preexisting 
structural knowledge, and takes an active role in 
establishing task-state representations by combining 
experienced sequences in novel ways that shape 
subsequent neural representations and generalization 
behavior.  
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Figure 1. Panel A shows an overview of the graph structured sequence task. A total of 4 sequences result in a 
common and a rare reward. The common reward is associated with a total of 3 sequences, 2 of which share their 
category structure (light orange). Different decisions probe for different types of knowledge. Value generalization 
probes for category knowledge expecting reward generalization to benefit from shared categories (B) compared to 
unrelated categories (C). Value decisions probe value learning without category information (D). Position 
decisions probe for representations of the sequence position independent of value and category (E).  
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