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Abstract: 

Speech processing involves segmenting a continuous 
input stream at various levels (e.g., sounds or words). 
But does the brain also segment spoken words into their 
meaningful subparts (called morphemes)? We gathered 
neurophysiological (MEG) data from participants as they 
heard complex words in Arabic, and compared the data 
against three different models of speech 
comprehension: a naïve model without morphological 
features, a passive model with  morpheme onset 
information, and a predictive model with boundary 
anticipation and morpheme surprisal and entropy. The 
predictive model explains significantly more data 
variability in bilateral superior temporal cortex compared 
to the passive model, which in turn explains more 
variability than the naïve model in bilateral temporal and 
inferior frontal regions. We also test different predictive 
parsing strategies. Our results support speech 
comprehension models that segment the input into 
morphemes predictively, rather than passively wait for 
boundaries or full morpheme identification.  
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Introduction A major challenge in speech processing 
is how the brain segments a continuous input stream, 
and it is typically studied  at the word or sound level. But 
morphemes (the smallest meaningful language units; 
e.g., ‘bake’ and ‘-ing’ in the word ‘baking’) comprise an 
intermediate level. Research has shown that the brain 
decomposes morphologically complex words into their 
parts in reading (see Leminen, Smolka, Duñabeitia & 
Pliatsikas, 2019 for a review). Does the brain segment 
speech at the morphological level? If so, what is the 
nature of this process? 

Methods 27 participants listened to single words in 
Arabic while we recorded brain activity using 
magnetoencephalography (MEG). Words consisted of 
a verb stem morpheme and one of four direct object 
pronouns (Fig. 1a; e.g., ‘qayyama-ni’=‘(He) evaluated 
me.’; hyphens represent morpheme boundaries). Verb 
stems were either long (all from the Arabic template 

‘_a__a_a’) or short (a shorter template with the same 
onset: ‘_a__a’). In Arabic, root consonants are 
substituted into the underscore slots to produce stems 
(e.g., root {j,r,b} produces ‘jarraba’=‘(he) tested’ in the 
long template; {j,r} produces ‘jarra’=‘(he) dragged’ in 
the short template). We had two conditions (Fig. 1). 
Morphologically ambiguous stems were short or long: 
all long stems had corresponding shorter stems with the 
same onset (e.g., ‘jarra’/‘jarraba’), producing temporary 
ambiguity as they unfold. Morphologically unambiguous 
stems were all long (e.g., ‘qayyama’), with no derivable 
shorter stems (i.e., ‘qayya’ is not a stem). Across 
conditions, stems became uniquely identifiable at the 
same stem uniqueness points (Fig. 1a; Balling & 
Baayen, 2012). Comprehension tasks targeting either 
stems or pronouns followed 25% of trials. Using source-
localization, we estimated cortical activity in bilateral 
temporal and inferior frontal areas.  

We contrast three hierarchically-nested models 
(Fig. 1b): (i) a morphologically naïve model that has 
acoustic, lexical and phonetic predictors, but is 
insensitive to morphological information or boundaries; 
(ii) a passive model, sensitive also to morpheme 
boundary/onset, and (iii) a predictive model, sensitive 
also to anticipatory segmentation, plus morphological 
surprisal and uncertainty (a function of corpus-
calculated transition probabilities between 
morphemes). Specifically, we test three predictive 
parsing strategies: a patient parser waits until a 
morpheme is fully identified before anticipating a 
boundary; an eager parser begins the predictive 
process as soon as the input is congruent with any 
morpheme, even if not yet unique (e.g. ‘jarra’, even if 
the actual stem will be ‘jarraba’), even at the cost of a 
later boundary revision (Fig. 1b); a probabilistic parser 
assigns weights to early and late boundary options 
depending on corpus frequency. We used a temporal 
response function framework (TRF; Brodbeck et al., 
2021) to estimate typical responses to each predictor, 
and to measure the models’ explanatory power. 
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Results & Interpretation Compared to a null model, all 
three models significantly explained activity in all 
regions (p<0.0001; corrected for multiple comparisons), 
which validates our models’ predictive power. When 
comparing nested model pairs, the passive model with 
morpheme onset information explained significantly 
more activity than the naïve model in bilateral temporal 
and inferior frontal ROIs (p=0.0001; Fig. 2a). In turn, all 
predictive models explained more activity than the 

passive model in bilateral temporal cortex (patient & 
probabilistic: p<0.0001; eager: p=0.0002; Fig. 2b).  

Our results provide evidence for morphological 
segmentation during speech processing, and support 
models where the brain (i) predictively segments words 
to morphemes, rather than passively wait for 
uniqueness points or boundaries, and (ii) uses 
morphological information to predictively process 
speech (Ettinger, Linzen & Marantz, 2014). This 
challenges some cohort-based models for speech 
comprehension, in which words are undecomposable 
units (e.g., Norris & McQueen, 2008). 

Figure 1: a) Experimental design & trial structure. 
Words had a stem morpheme, a subject morpheme 
(null if masculine subject), and a direct object 
morpheme. Stems had identical uniqueness points 
(vertical bars), after which stem were disambiguated 
from all possible stems. Stems had either no ambiguity 
(blue; always long-stem), or temporary ambiguity 
(red=long, orange=short stem); b) Example predictor 
values. We compare three hierarchically-nested 
models: the naïve model only had acoustic, lexical, and 
phonetic features (cyan); the passive model had also a 
morpheme boundary feature (cyan+green); the 
predictive models had also predictive morphological 
features (cyan+orange). We considered three 
predictive parsing strategies: patient (▼), eager (◄), 
and probabilistic (►) 

Figure 2: Comparing predictive power in a) passive vs. 
naïve models; b) predictive models (all three 
strategies) vs. passive model. Each panel shows 
t-value map (colorbar) from a one-tailed related t-test 
between models. Red borders outline test ROIs. Yellow 
borders show clusters of greater explanatory power. 
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