Using Deep Learning tools for fitting Reinforcement Learning Models
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Abstract

Computational cognitive modeling has advanced our un-
derstanding of learning and decision-making. However,
the set of models we use is often limited by technical con-
straints, such as feasibility of model-fitting. Most mod-
eling methods require computing the likelihood of the
data under the model (e.g. finding parameters that max-
imize it). However, many computational models have in-
tractable likelihoods, and workarounds designed for this
problem only work on a small subset of models with spe-
cific assumptions. To address this issue, we tested a
method using deep learning tools to estimate model pa-
rameters without estimating intractable likelihoods. Our
results show that we can adequately recover parameters
using this end-to-end approach. Our work contributes an
important new tool to the ongoing development of com-
putational techniques that will enable researchers to con-
sider a broader set of models and develop better theories
of complex human cognition.
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Introduction

Reinforcement learning (RL) models have played an inte-
gral role in formalizing cognitive processes underlying reward-
based learning. They have significantly contributed to our un-
derstanding of neural mechanisms (i.e. dopaminergic signals,
(Schultz, Dayan, & Montague, 1997)), as well as individual dif-
ferences (i.e. impaired computational mechanisms in clinical
populations (Collins, Brown, Gold, Waltz, & Frank, 2014)) of
reward-driven behavior.

Model-fitting methods commonly used to fit RL models
are all dependent on evaluating the likelihood of the data
(i.e. choices) under the given model (maximum likelihood
estimation, MLE; maximum a posteriori, MAP; hierarchical
Bayesian estimation) (Katahira, 2016; Lee, 2011; van Geen
& Gerraty, 2021; Baribault & Collins, 2021). However, there

are important classes of RL models with intractable likeli-
hood; for example, some RL models assume that observed
choices are dependent on discrete non-observable variables
(i.e. what rule participants followed to generate choices). This
can result in an intractable problem of integrating over un-
certainty over non-observable variables, making it impossi-
ble to fit these models using likelihood-based methods. Var-
ious workarounds developed for models with intractable like-
lihood (Approximate Bayesian Computation; Probability Den-
sity Approximation; Inverse Binomial Sampling) (Turner et al.,
2013; van Opheusden, Acerbi, & Ma, 2020) also do not apply
broadly, because they assume independence between data-
points, which is not the case for many RL models. Thus, re-
searchers often avoid considering the models with intractable
likelihood, even if these models provide a more plausible theo-
retical account of the process they are interested in capturing.

We propose a novel model-fitting approach based on deep
learning, with the aim of developing a general-purpose tool
for fitting a wide range of RL models, including the ones with
intractable likelihood.
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Figure 1: Task environment, and performance of simulated
model. A) Hierarchical reversal learning task. B) Example
of noisy feedback in the task. C) Hierarchical RL model with
intractable likelihood can perform this task adequately.
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Methods

While models with intractable likelihood cannot be fit using
likelihood-based methods (and most alternatives), they can
be easily simulated. We leveraged this property to create a
large supervised learning dataset, and used an end-to-end
neural network architecture to learn the mapping from sim-
ulated model trajectories to model parameters. As a proof of
concept, we first benchmark the performance of parameter re-
covery for a simple RL model with a tractable likelihood, and
then for a hierarchical RL models with an intractable likelihood.

Intractable likelihood dataset generation

Hierarchical reversal learning task. We developed a novel
task environment, with a simple but plausible model with in-
tractable likelihood. In the task, agents need to learn which
arrow’s direction to follow, by pressing left or right key, in order
to get rewarded; the correct arrow changes unpredictably (Fig:
1A). If an agent chooses the side consistent with that of the
correct arrow, it gets rewarded with high probability p = 0.90
(Fig: 1B); otherwise, it gets punished with the same high prob-
ability.

Hierarchical reinforcement learning model. We consid-
ered a Hierarchical reinforcement learning (HRL) (Fig: 1C)
agent that tracks the value of each arrow, and chooses
between the arrows noisily (with some tendency to repeat
the choice from the previous trial): p(arrow) =< exp(BQ +
K same(arrow,arrow;_1)). The arrow the agent chooses is
non-observable, as we only know which direction the agent
chose. Following the choice of the arrow, the agent greed-
ily chooses the direction of the chosen arrow (observable).
The agent then updates the value of the selected arrow based
on observed outcome: Q1 (arrow) = Q,(arrow) + a(r —
Q;(arrow)). To compute the likelihood of each subsequent
choice we need to integrate over uncertainty of what the unob-
served choice was on all past trials. The number of terms for
this integration increases exponentially with each time-point,
making the likelihood intractable beyond the first several trials.

Deep learning approach

The neural network (NN) structure used is inspired by previous
work (Dezfouli et al., 2019). The NN consists of a recurrent
neural network (RNN) with 70 bidirectional long short term
memory (LSTM) cells, and a 4-layer feed-forward network (70
units in first two layers, 10 units in the third layer and p units
in the output layer where p = number of parameters). RNNs
retain information across input sequences, making them suit-
able for data with sequential dependencies. The terminal state
of the RNN is encoded into a p-dimensional space by the feed-
forward network. We used ADAM optimizer, mean squared
error (MSE) loss function, and rectified linear unit (ReLU) acti-
vation function in all layers (linear activation function in the last
one). We trained the network using simulated agents and true
parameter values, and validated the network performance on
the out-of-sample validation set.
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Results

We first simulated 30000 training and 3000 validation agents
from a simple 2-parameter RL model (with tractable likelihood)
on a different task. We trained the network for 600 epochs,
with the batch size of 512. We compared the neural network
performance (MSE loss) against the MSE of the standard
method we also used to estimate model parameters (MAP).
Both parameters of the model were well recovered using our
DL approach (Fig:2A), with DL loss for validation data in the
range of error margins of the standard method (MAP; Fig:2B).
We can, therefore, justify the DL approach as it performs com-
parably to the standard method, when both approaches are
applicable.

Next, we simulated 800000 training and 10000 validation
agents from the HRL model, with fixed . We trained the
network to recover other parameters for 1200 epochs with
a batch size of 1024. HRL learning rate recovery was ade-
quate (Fig:2C), providing preliminary evidence of success in
using DL tools for estimating parameters of RL models with
intractable likelihood.
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Figure 2: Successful recovery of a 2-parameter RL model with
the DL approach (A), with loss within the bounds of that ob-
tained with MAP (B). C) Successful recovery of the learning
rate parameter from the model with intractable likelihood.

Discussion

Our results show that DL tools can be used for fitting RL mod-
els with intractable likelihood. We will further test the robust-
ness of the DL approach (i.e. missing trials, different models),
as well as experiment with different DL structures (i.e. trans-
formers as advanced structures for sequential data (Devlin,
Chang, Lee, & Toutanova, 2018)). Developing such tools
could increase the range of cognitive models researchers can
test, for which existing fitting methods cannot be used.
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