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Abstract
Auditory categorization, e.g. identifying a song in a noisy
environment, is difficult. After all, only some sounds that
we hear may be relevant and part of the song. Thus, we
need to appropriately weight and integrate over the differ-
ent sounds that we hear. Simultaneously, we also need to
constantly account for our internal sensory noise. Lastly,
early verses in a song generally predict latter verses,
making our ability to learn over time crucial to accurate
decision-making. Despite this complexity underlying cat-
egorization, previous papers have usually studied the ef-
fects of relevance, sensory noise, and expectations in
separation. Here, we test how these different factors
combine to affect our decisions by formalizing multi-tone
sound categorization as a Bayesian model and testing it
with new behavioral experiments. We find that partici-
pants are sensitive to relevance and that the history of
categories affects their expectations. However, there is
substantial diversity amongst participants both in their
measure of relevance and in their expectations. Thus, our
model reveals participant-specific tone-by-tone estimates
of relevance, sensory noise, and expectations, giving us
variables to understand how the brain categorizes.

Keywords: Decision-making; Auditory; Categorization; Stimu-
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Introduction
Intrinsic to perceptual decision-making is uncertainty (Vilares
et al., 2012). One source of uncertainty, usually termed “sen-
sory noise”, stems from fluctuations in the neural representa-
tion of sensory information (Barthelmé & Mamassian, 2009).
A second source of uncertainty is identifying stimuli that are
relevant to a decision from other concurrent irrelevant stim-
uli, especially if the relevant and irrelevant stimuli have similar
characteristics (Anders et al., 2017). A third type of uncer-
tainty is “decision specific”. For example, when categorizing
continuous stimuli into different discrete categories, we fre-
quently encounter stimuli that have ambiguous category mem-
bership (Gifford, Cohen & Stocker, 2014). Thus, perceptual
decision-making in everyday scenarios necessitates a suc-
cessful accounting of multiple, often coincidental sources of
uncertainty. Although the effect of each of these types of un-
certainties has been studied in isolation, the manner in which
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Figure 1: Examples of trial sequences from (A) unbiased, (B)
biased low, and (C) biased high sessions. Each trial has
three tone bursts denoted by notes: signal notes from the
low-frequency Gaussian (blue), signal notes from the high-
frequency Gaussian (green), and distractor notes from the
uniform distribution (purple). (D) Signal and distractor prob-
ability distributions for each category. (E) Schematic of the
Bayesian strategies. Probabilistic strategy: every tone burst is
probabilistically considered either ‘signal’ or ‘distractor’. Sig-
nal strategy: all tone bursts are considered ‘signals’. Random
Choice strategy: all tone bursts are considered ‘distractors’. s:
signal; d: distractor, L: low category, H: high category.

they interact to inform our decisions has yet to be tested.
Here, we used auditory categorization (Russ, Lee & Cohen,
2007) as an illustration of human perceptual decision-making
to probe whether and how these uncertainties cumulatively
shape behavior.

Experimental Design
Human subjects performed a two-alternative forced choice
task and categorized trial sequences of three tone bursts as
‘low’ or ‘high’. Each tone burst could be ’signal’ (i.e., relevant
to the categorical decision) or ’distractor’ (i.e., irrelevant to the
categorical decision). In a given trial, each tone burst could
probabilistically either be a signal with pS=0.7 or a distractor
pD=0.3 (Figs.1A-C). For low- (high-) category trials, we drew
signal tone bursts from the low-frequency (high-frequency)
Gaussian, and distractor tone bursts from a uniform distribu-
tion (Fig.1D). Further, our experiment was divided into three
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Figure 2: (A) BIC scores for Probabilistic vs. Random Choice
strategy for all 56 subjects (smaller value is better). (B) Same
for BIC scores for Probabilistic vs. Signal strategy. (C,D) Psy-
chometric curves (black) and Bayesian model fits (red; dark
blue) for 2 example subjects whose accuracies were 85.1%
and 64.8%, respectively. (E) Categorization accuracy for trials
with two versus one distractor tone burst. (F) On a subject-by-
subject basis, accuracy is plotted against their corresponding
relevance metric. Subjects from (C,D) are noted using arrows
in (E,F). Error bars: 95% confidence.

sessions: unbiased, biased low, and biased high. In the un-
biased session, trials were equally likely to be drawn from ei-
ther the high or low category, i.e., pL=0.5 (Fig.1A). In the bi-
ased low (biased high) session, we overrepresented the corre-
sponding distribution such that pL(pH)=0.7 (Figs.1B,C). Sub-
jects were not cued about the change in priors.

Results and Discussion
Bayesian Framework
We hypothesized that subjects may use different strategies to
solve the same categorization task, depending on their inter-
nal model of the relevance of the three tone-burst frequen-
cies (Fig. 1E). We formalized this hypothesis with a Bayesian
framework (Vilares & Kording, 2011). The first strategy (Prob-
abilistic strategy) considers the optimal behavior of a Bayesian
subject, who uses the information from all three tone bursts
and determines which are signals and distractors. The model
has 6 parameters (Fig. 1D): means and standard deviation of
the Gaussians (µL, µH ; σ), a subject’s sensory noise (σsensory),
the probability that a tone burst is distractor (pdistractor), and
the probability that a trial’s category is ’low’ (plow). Two other
strategies, which are suboptimal, are special cases of the
Probabilistic model. In the Signal strategy, all three tone bursts
are assumed to be signal i.e., pdistractor=0. Conversely, in the
Random Choice strategy, all tone bursts are considered to be
distractor, thus a subject’s choice is akin to a coin flip; this
model has only 2 parameters: σsensory and plow.

Variability in subject behavior
56 subjects participated in the unbiased session. We found
that their performance was better fit by the Probabilistic strat-
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Figure 3: (A-D) Average psychometric curves computed using
20 subsampled balanced datasets for 4 example subjects in
the unbiased (black), biased low (yellow), and biased high
(brown) sessions. (E,F) For 46 subjects, internalized bias
is plotted against their corresponding relevance metric and
(G,H) their accuracy. Error bars: 95% confidence.

egy compared to the Random Choice or Signal strategies
(Figs. 2A,B). In other words, all subjects judged the tone-
burst sequences to be a mix of signals and distractors. How-
ever, we also observed substantial inter-subject variability as
seen in the psychometric curves and Probabilistic-model fits
for 2 example subjects (Figs. 2C,D). Further, subjects’ ac-
curacies in trials with one distractor ranged widely from 57 -
89% and in trials with two distractors ranged from 61 - 75%
(Fig. 2E). To characterize how subjects’ estimates of stimu-
lus relevance determined their accuracy, we defined a metric
associated with the posterior of the Probabilistic model, the
relevance metric. This metric summarizes the relevance at-
tributed to different frequencies and is ∼1 if a subject consid-
ers all tone bursts as signals but ∼0 if they correctly identify
and disregard the distractors. We found that this metric is in-
versely correlated with accuracy (Fig. 2F), which illustrates
how relevance and uncertainty combine to shape decisions.

Next, we tested how prior information affected subjects’ de-
cisions by changing their expectations. Of the 48 subjects who
completed all three sessions, 2 significantly used their priors
in the biased sessions as seen in the shift of their psycho-
metric curves (Figs. 3A,B). Correspondingly, out of the three
strategies, their data was best fit by the Random Choice strat-
egy. On the other hand, the data from remaining subjects
were best captured by the Probabilistic strategy; these sub-
jects were variable in the degree to which the priors affected
their decisions (examples in Fig. 3C,D). We found that sub-
ject’s ‘internalized bias’ (i.e. 2|plow − 0.5|) or in other words
their ’internalized expectation’ was correlated with their rele-
vance metric. This analysis illustrates the interplay of uncer-
tainty, relevance, and priors in decision-making. Those who
successfully identified the relevant signal tone bursts and cat-
egorized accordingly were not only less biased, but also more
accurate. Conversely, highly biased subjects perceived dis-
tractors as ‘signals’, resulting in poor accuracy.
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