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Abstract
The inferential basis of perception is thought to arise in
the sensory cortex through prediction of future events
that aid processing efficiency. Predictive coding (PC),
a theoretical framework in which the brain compares a
generative model to incoming sensory signals, seeks to
explain this inferential process. There is little under-
standing, however, of how PC might be implemented at
a mechanistic level in individual neurons within the au-
ditory system. Here, we examined responses of single
neurons in caudomedial nidopallium (NCM) and caudal
mesopallium (CM), analogs of higher order auditory cor-
tex, in anesthetized European starlings listening to con-
specific songs. We trained a feedforward temporal pre-
diction model (TPM) to define a “latent” predictive fea-
ture space and its corresponding feature space repre-
senting prediction error. We show that NCM spiking re-
sponses are best modeled by the predictive features of
spectrotemporal song, while CM responses capture both
predictive and error features. This provides strong sup-
port for the notion of a feature-based predictive auditory
code implemented in single neurons in songbirds.
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Introduction
In sensory processing of temporally patterned signals such
as speech and audio, existing knowledge includes an internal
model for the expectation of future events. By predicting what
it expects to encounter, the efficiency of perceptual represen-
tations in the brain are increased. The inferential process of
combining existing knowledge with information from the out-
side world has been modeled by predictive coding (PC). This
theory posits that the brain is an active hypothesis-testing
mechanism which compares an internal generative model to
incoming sensory signals (Clark, 2013; Huang & Rao, 2011).

PC has been employed to explain perceptual and cognitive
phenomena, and has inspired computational models. Most
PC models rely on the hierarchical architecture of the cortex
to implement a top-down algorithm that constantly predicts in-
coming sensory stimuli and compares these predictions with

ascending sensory inputs to elicit a prediction error (Rao &
Ballard, 1999). The error serves as feedback in an adaptive
process that alters the prediction, resulting in an active sys-
tem that continuously updates the internal model to minimize
prediction error. The hierarchical generative model emerges
in a natural unsupervised manner from the single criteria of
prediction error minimization.

Evidence in support of PC has been observed across sen-
sory modalities (Clark, 2013; Heilbron & Chait, 2018; Keller
& Hahnloser, 2009). In songbirds, this theory provides the
opportunity for investigation of song learning and vocal com-
munication. Because it requires the ability to distinguish self-
generated vocalizations from external sounds; to differentiate
between developing and learned song; and to recognize con-
specifics. However, it remains unclear whether and how PC is
implemented neurally in the auditory domain. To study these
processes directly in European starlings, we developed a sim-
ple model to generate stimulus representations that capture
predictive spectrotemporal features of song. We subsequently
modeled neural activity fit to three separate stimulus represen-
tations corresponding to general, predictive and error spec-
trotemporal auditory features.

Results

Generative Model

To implement a generative PC model in the temporal auditory
domain, we trained a simple, feedforward, single layer tem-
poral prediction model (TPM) (Singer et al., 2018) to predict
short segments (10.5 ms) of future natural birdsongs based on
past 170 ms spectrographic samples (Figure 1a). The model
predicts the output from a linear mapping of input weights fol-
lowed by a monotonic (sigmoid) nonlinear transformation that
resembles the linear-nonlinear cascade for sensory neuron fir-
ing. We trained the TPM on an extensive corpora of birdsong
spectrograms to generate a “latent” predictive feature space
comprising 256 hidden units that facilitate predictions of the
imminent future song. Under this model, the latent space con-
taining predictive spectrotemporal features of song represents
the prediction component of the PC framework, compared to
the more generalized class of spectrotemporal features com-

148
This work is licensed under the Creative Commons Attribution 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



Figure 1: (A) Waveform and spectrogram of a European starling song (top); generalized architecture of TPM (bottom). (B)
Acoustic feature spaces: spectrotemporal (top), predictive (middle), error (bottom) outputted by the TPM. (C) CRFs of an NCM
neuron fit to three stimulus representations. (D) Response prediction by MNE model compared to spike train (red). (E) Proportion
of response variance explained by each stimulus representation in NCM (left) and CM (right).

prising the whole of incoming song. We capture the prediction
error component of the PC framework by computing the mean
squared error between the output of TPM (i.e. predicted song)
and the true song (Figure 1b).

Neural Responses Modeled to Stimulus
Representations

To relate stimulus representations to neural activity, we com-
puted receptive fields for NCM and CM neurons using the
Maximum Noise Entropy (MNE) method (Fitzgerald, Sincich,
& Sharpee, 2011), which well-describes the sensitivity to
higher-order features exhibited by NCM neurons (Kozlov &
Gentner, 2016).

For each single unit in simultaneously recorded popula-
tions, we independently estimate the MNE model parameters
that optimally relate the neuron’s response to each of three dif-
ferent stimulus representations: either the short-time Fourier
transform spectrogram, the projection of the spectrogram into
a TPM latent space, or the mean squared error between TPM-
predicted future spectrogram and the true spectrogram. This
yields a version of each neuron’s composite receptive field
(CRF) fit to either: 1) all spectrotemporal features of conspe-
cific song (fft-CRF) or 2) only the predictive spectrotemporal
features of song (tpm-CRF) or 3) spectrotemporal features of
song corresponding to prediction error (mse-CRF). Examples
of the three CRFs for a single NCM neuron are shown in Fig-
ure 1c. The parameters of each trained MNE model can be
used to predict the spiking response of a neuron to novel stim-
uli (Figure 1d).

In NCM (n = 541 neurons, 3 birds), the tpm-CRFs yield very
good predictions of each neuron’s empirical spiking response
to novel song, accounting for 70.41% of the response variance

(mean r = 0.88±0.05) which is slightly higher than the fft-CRF,
accounting for 67.92% of the response variance (mean r =
0.86±0.06; p<5.5x10-8, paired t-test). The mse-CRFs yield
significantly poorer predictions of responses to novel songs,
explaining only 11.15% of variance; p= 0.0, paired t-test; Fig-
ure 1e). In CM (n = 137 neurons, 1 bird), as in NCM, the
tpm-CRFs provide very good predictions of spiking responses
similar to those of the fft-CRFs (77.36% (mean r = 0.86±0.10),
79.20% (mean r = 0.88±0.10) variance explained, respec-
tively; p<1.0x10-15 paired t-test). Unlike NCM, however, the
mse-CRF predicted a significant proportion of the CM re-
sponse variance, 53.61% (mean r = 0.68±0.14; p<1.7x10-
190, t-test CM vs NCM). Ongoing work will compare respec-
tive temporal modeled responses and perform variance parti-
tioning to examine unique and shared contributions.

Conclusions
The sensory cortex develops internal models that are thought
to generate predictions of incoming inputs, yielding efficient
neural encoding. Here we investigated internal representa-
tions of sensory information under the computational frame-
work of predictive coding in the auditory domain in songbirds.
We trained a neural network as a proxy for the internal gener-
ative model, and examined responses of individual neurons fit
to separate components of this generative model. We found
that single neuron auditory responses in both NCM and CM
are best modeled collectively by a signal representation that
captures covariant structure in the predictive spectrotemporal
acoustic features of song. We also found that spectrotemporal
features capturing uncertainty between actual and expected
song highly contribute to modeling of CM neuron responses.
These results provide strong, direct support for the notion of a
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feature-based predictive auditory code implemented in single
neurons in songbirds.

Acknowledgments
Work supported by NIH R01DC018055 to TQG.

References
Clark, A. (2013). Whatever next? predictive brains, situated

agents, and the future of cognitive science. Behavioral and
brain sciences, 36(3), 181–204.

Fitzgerald, J. D., Sincich, L. C., & Sharpee, T. O. (2011). Min-
imal models of multidimensional computations. PLoS com-
putational biology , 7 (3), e1001111.

Heilbron, M., & Chait, M. (2018). Great expectations: is there
evidence for predictive coding in auditory cortex? Neuro-
science, 389, 54–73.

Huang, Y., & Rao, R. P. (2011). Predictive coding. Wiley In-
terdisciplinary Reviews: Cognitive Science, 2(5), 580–593.

Keller, G. B., & Hahnloser, R. H. (2009). Neural processing of
auditory feedback during vocal practice in a songbird. Na-
ture, 457 (7226), 187–190.

Kozlov, A. S., & Gentner, T. Q. (2016). Central auditory neu-
rons have composite receptive fields. Proceedings of the
National Academy of Sciences, 113(5), 1441–1446.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in
the visual cortex: a functional interpretation of some extra-
classical receptive-field effects. Nature neuroscience, 2(1),
79–87.

Singer, Y., Teramoto, Y., Willmore, B. D., Schnupp, J. W., King,
A. J., & Harper, N. S. (2018). Sensory cortex is optimized
for prediction of future input. Elife, 7 , e31557.

150


