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Abstract
Real-world agents must be able to efficiently acquire new
skills over a lifetime, a process called “continual learn-
ing.” Current continual machine learning models fall
short because they do not selectively and flexibly trans-
fer prior knowledge to novel contexts. We propose a
cognitively-inspired model called Contextual Representa-
tion Ensembling (CRE), which fills this gap. We compared
CRE to other state-of-the-art continual machine learning
models as well as other baseline models on a simulated
continual learning experiment. CRE demonstrated supe-
rior transfer to novel contexts and superior remembering
when old contexts are re-encountered. Our results sug-
gest that, in order to achieve efficient continual learning
in the real world, an agent must have two abilities: (i) they
must be able to recognize context cues within the envi-
ronment in order to infer what prior knowledge might be
relevant to the current context and (ii) they must be able
to flexibly recombine prior knowledge.
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Introduction
Humans are capable of “continual learning”: we can use what
we have learned in one context to quickly learn something
in a new context, progressively building and refining a reper-
toire of skills over of a lifetime. Traditionally, machine learning
systems would struggle with learning a sequence of tasks, be-
cause learning a new task produced “catastrophic forgetting”
of what had been learned before. While there are now both
algorithmic and architectural solutions that minimize catas-
trophic forgetting in simple settings, machines still substan-
tially forget when faced with real-world sequences of tasks.
Furthermore, machine learning systems still cannot flexibly
and rapidly re-use knowledge as humans can.

Here we present a novel artificial neural network (ANN) ar-
chitecture and training procedure for learning a sequence of
supervised learning tasks, guided by an overarching hypoth-
esis about how continual learning is achieved in humans: we
propose that humans learn and store multiple knowledge rep-
resentations for any input, and solve tasks by combining (“en-
sembling”) knowledge representations that are appropriate to
the current context. Recognizing the relevant context aids per-
formance, not only because it enables us to retrieve relevant
knowledge, but also because our new learning will not inter-
fere with context-irrelevant knowledge, which is stored in other
representations. We call this strategy for continual learning
Contextual Representation Ensembling (CRE).

Contextual Representation Ensembling
The CRE architecture (Fig 1) is based on a mixture of experts
(MoE) design, and resembles the cognitively-inspired Dyn-
MoE model for continual machine learning. Like DynaMoE,
our CRE model starts with a single “expert” module, and dy-
namically recruits and trains additional experts as new tasks
require them. In contrast to DynaMoE, which can only reuse
individual experts, our model makes use of an “Ensembler”
module, which enables representations of multiple experts to
be flexibly recombined to solve novel tasks. We call these
ensembles of experts “schemas”. Furthermore, unlike Dy-
naMoE, our model makes use of a context recognizer mod-
ule, which exploits task-informative context cues within the in-
put. The context recognizer relies on an episodic memory
bank, which stores examples of previously encountered con-
texts and the optimal schemas associated with them. Rec-
ognizing context from environmental cues helps to (i) initial-
ize a compact set of existing schemas that may be relevant
in a novel but related context is encountered (via nearest
neighbors matching of the novel context to prior contexts in
episodic memory) and (ii) immediately reinstate the context-
appropriate schema when an old context is re-encountered.

Results
We simulated a series of four binary classification tasks (Fig
2a), and trained several ANN algorithms on them. The proba-
bility distribution of the input is identical in all tasks. However,
the classification rule differs between the tasks. The first 17
dimensions of the input X ∈ R20 is uniformly distributed over
[1,−1]. The last three dimensions are configured such that
they have unique distributions for each task. Thus, these di-
mensions are task-informative “context cues.” In Task 1, the
class label Y is determined by the XOR function on the first
two dimensions:

Y = XOR(X1,X2) =

{
1 if X1 ∗X2 > 1
0, otherwise

Similarly, the class labels in Tasks 2 and 3 are determined by
XOR(X3,X4) and XOR(X5,X6), respectively. In Task 4, Y = 1
if X1 ∗X2 + X3 ∗X4 > 0 and Y = 0 otherwise. Because Tasks
1 and 2 require learning representations that multiply X1 ∗X2
and X3 ∗X4, respectively, Task 4 can be learned much more
quickly by selectively transferring these two representations
and linearly combining them.

We compared CRE to four other algorithms: 1) DynaMoE,
2) Elastic Weight Consolidation (EWC), 3) a basic ANN that
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Figure 1: The CRE architecture.
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Figure 2: (a): Visualization of the four binary classification tasks in input space.(b): Classification accuracy comparison of the
different algorithms as they sequentially proceed to learn Tasks 1-4 in order followed by revisiting Task 1.

fine tunes on each subsequent task (FineTune), and 4) a
basic ANN that trains from scratch on each task (Scratch).
All algorithms were trained incrementally in sequential order
from Tasks 1-4 followed by revisiting Task 1. We found that
CRE performed comparably to all other algorithms on Tasks
1-3. However, CRE exhibited superior transfer in Task 4 and
superior memory and recognition of Task 1 when it was re-
encountered.

Conclusions

Real-world agents must learn rapidly in novel context by
reusing and recombining prior knowledge; the inability to do
so can have dire consequences In real-world scenarios in
which feedback is delayed or sparse, or in which just one

or two mistakes is too costly, rapid performance is critical.
We demonstrated that CRE enables rapid performance in two
ways. First, by implementing an ensembler, prior knowledge
(”experts”) can be flexibly recombined to rapidly learn novel
tasks. Second, recognizing old contexts enables immediate
remembering, and recognizing similar novel contexts enables
rapid inference of what prior knowledge might be relevant.
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