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Abstract

Accurately measuring similarity between different ani-
mals’ neural responses is a crucial step towards eval-
uating deep neural network (DNN) models of the brain.
Under what transform class are animals likely to be sim-
ilar to each other, and how much neural data needs to
be collected to get an accurate similarity estimate? Us-
ing model variability as a proxy for inter-animal variability,
we find that where we measure similarity from has criti-
cal implications for the suitable transform class. Specif-
ically, we observe high linear mappability between pre-
ReLU activations, but require a simple non-linear map-
ping class (that combines logistic regression with linear
regression) in the case of post-ReLU activations. With
our approach, we estimate that measuring inter-animal
variability requires collecting neural data for at least 500
stimuli and 300 neurons from the same hypercolumn, pro-
viding a prescription for future experimental data that can
adjudicate between models.
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Introduction

A plausible standard for accurate DNN models of the brain
requires a DNN’s neural responses to be at least as simi-
lar to a given animal’s neural responses as two conspecifics’
neural responses are to each other (Cao & Yamins, 2021).
However, estimating inter-animal variability is challenging, be-
cause most extant datasets are statistically underpowered. In
this work, we make some progress on this problem by using
model variability as a proxy for inter-animal variability, in order
to answer two questions:

1. What metrics are useful for comparing neural responses?

2. How much data (stimuli, neurons) would we need to accu-
rately estimate inter-animal variability?

Method

Studying model variability as a proxy for animal variability re-
quires having models that are reasonably similar in their neu-
ral responses to the animals, as well as having a source of
variation in the models that is a reasonable proxy for varia-
tion between animals. Given the widespread use of rodents in
experimental neuroscience, we use the current state-of-the-
art unsupervised DNN models of mouse visual cortex, based
on the AlexNet architecture (Nayebi et al., 2021; Krizhevsky,
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Figure 1: Comparing R? scores across mappings and
pre- vs post-ReLU Ridge regression achieves the highest R?
scores between corresponding model layers for pre-RelLU ac-
tivations, but LogisticRidge performs slightly better than ridge
for post-ReLU activations. The R? score is aggregated over
target units (median), for 10 train-test splits (mean) and 6
model pairs (mean), training the mappings on 8,000 stimuli.

2014). To introduce model variability, we use different ran-
dom seeds, which control the weight initialization and the or-
der of training data seen by the neural networks. The working
assumption is that two models trained from different random
seeds have roughly the same variability in neural responses
as two different mice.

Criteria for choosing a similarity measure The goal is to
determine according to what similarity metrics different mod-
els’ neural responses (and possibly animals’) are highly simi-
lar to each other. In order to compare different similarity met-
rics to each other, we restrict ourselves to considering similar-
ity measures that take the form of predictive mappings from
a source animal’s neural responses in a given layer to a tar-
get animal’s neural responses in the same layer. The similar-
ity score is defined as the coefficient of determination (R?) of
such a mapping on a held-out test set.

A good similarity metric should be as constrained as possi-
ble while still rating models (or animals) as highly similar. To
the extent the mapping class is highly constrained, the fact
that neural responses can be mapped to each other identifies
a stronger sense of similarity.

Results

Pre-ReLU activations enable higher R”> scores When
evaluating the neural predictivity of a DNN model of the
brain, it has long been the case that the features from the
model used to predict neural responses correspond to post-
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nonlinearity activations. Such a choice aims to use data from
the model that is analogous to the action potentials measured
in animal data. When predicting a model’s features from an-
other model’s features, it is feasible to use the pre-nonlinearity
features for both inputs and outputs, which might be analo-
gous to membrane potentials. We observed a significant ad-
vantage in predictive accuracy of the mappings trained on pre-
RelLU features as can be seen in Fig. 1. This implies that neu-
ral networks are much more similar to each other than they
appear if you only look at the post-RelLU activations, which
tend to be sparse.

One hypercolumn is all you need Doing regressions only
between the neurons in a model layer with receptive fields at
the center of the image leads to similarity scores that are al-
most as high as using all the neurons in the layer. This re-
duces the number of neurons required to achieve a high re-
gression score. This column alignment is analogous to record-
ing from the same hypercolumn in the source and target ani-
mals.

The best performing metrics We found ridge regression to
be the best-performing mapping class for pre-ReLU features.
However, it underperforms when mapping post-ReLU features
(Fig.1). To deal with the sparseness of the post-RelLU activa-
tions, we introduce LogisticRidge, a mapping that predicts the
sparsity pattern of the targets and only performs ridge regres-
sion for the non-zero target units. This is the best-performing
mapping on post-RelLU features.

Number of neurons and stimuli needed to estimate trans-
form similarity We perform unit and stimuli subsampling
on our models to estimate a lower bound on the amount of
data we need (in terms of number of neurons and stimuli we
have neural responses for) to estimate model variability. To do
the unit subsampling, we pooled units from 9 different source
models together, treating them as a single “animal” in order
to estimate the high end of the sampling range. As Fig. 2
shows, the R? score saturates much earlier for pre-ReLU fea-
tures compared to post-ReLU features, at about 100 units and
200 training stimuli.
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Figure 2: Stimuli and unit subsampling Ridge regression R?
begins to saturate at about 500 and 200 training stimuli, and
500 and 100 model units, for post- and pre-RelLU features.
For the left panel, we used all units in a model hypercolumn.
For the right panel, we used 8,000 training stimuli.
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Figure 3: Neuron-to-unit ratios (ox) and estimated animal
neuron sampling curve The curves represent our modeling
estimates for animal similarity as you collect data from more
neurons while keeping the number of stimuli fixed at 118.

Estimating the neuron-to-unit ratio In order to apply our
unit subsampling analysis to the case of animal variability, we
estimated a ratio of model units to animal neurons, since one
unit is unlikely to be functionally equivalent to one neuron. Un-
der the assumption that our model population has roughly the
same variability as the animals, we expect the subsampling
curves for units and neurons to overlap with each other once
the ratio of animal to model neurons is taken into account.

We match each visual area in mouse cortex to the model
layers that best predict that visual area(s) according to (Nayebi
et al.,, 2021). We performed subsampling on both pooled
source model units as well as mouse neural responses (de
Vries et al., 2020; Siegle et al., 2021) for the same 118 stimuli
to get curves similar to those shown in Fig.2.

We modeled the unit subsampling curve for models as hav-
ing the form: f(m) = Lyarctan(ksm) + by, where f(m) is the
R? score for a given number of model units 7. For the ani-
mals, we fit g(n) = log(kgn) + by, for animal neurons n. This
curve can be used to extrapolate the inter-animal similarity for
high neuron counts. We assume m = n/o. and minimize the
distance between f and g in the interval [0, N;], where N, is
the max. number of pooled source neurons in visual area [:

N
o' = argming | (f(n/o0) — g(m)%dn

The resulting animal neuron sampling curve (obtained by
transforming the model subsampling curve by the calibration
ratio) is presented in Fig. 3.

Conclusion

Our results show that pre-ReLU activations from different net-
works are strongly similar to each other according to linear
regression, and that by sparsifying the data, the ReLU layer
masks this similarity. In the future, it may be beneficial to col-
lect electrophysiological data on membrane potentials, not just
action potentials, in order to measure animal transform simi-
larity. Finally, the fact that LogisticRidge outperforms Ridge
on post-RelLU activations suggests that the correct transform
class for post-ReLU activations is non-linear, and motivates
future research in refining the true transform class between
post-ReLU activations.
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