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Abstract
Finding points in time where the distribution of neural re-
sponses changes (change points) is an important step in
many neural data analysis pipelines. However, in complex
and free behaviors, where we see different types of shifts
occurring at different rates, it can be difficult to use exist-
ing methods for change point (CP) detection because they
can’t necessarily handle different types of changes that
may occur in the underlying neural distribution. In this
work, we introduce a new approach for finding changes
in neural population states across diverse activities and
arousal states occurring in free behavior. Our model fol-
lows a contrastive learning approach: we learn a metric
for CP detection based on maximizing the Sinkhorn diver-
gences of neuron firing rates across two sides of a labeled
CP. We apply this method to a 12-hour neural recording of
a freely behaving mouse to detect changes in sleep stages
and behavior. We show that when we learn a metric, we
can better detect change points and also yield insights
into which neurons and sub-groups are important for de-
tecting certain types of switches that occur in the brain.

Keywords: Change Point Detection; Neural Population Activity;
Metric Learning; Naturalistic Behavior Analysis; Contrastive
Learning

Introduction
The brain is constantly in a state of flux, with variations oc-
curring as individuals switch their attention to new tasks (Luo
& Maunsell, 2019) or change their mood and overall state
(Shannon et al., 2013; Li, Poo, & Dan, 2009). Thus, in the anal-
ysis of data that spans multiple states or behaviors, identifying
change points, or points in time where the distribution of neural
responses shifts, becomes a critical task (Brecht, Schneider,
Sakmann, & Margrie, 2004; Houweling & Brecht, 2008).

Change points have been studied in neural activity for sin-
gle neurons (Ratnam, Goense, & Nelson, 2003) and in rel-
atively simple tasks where there are a small number of pre-
defined switches (e.g., Ready-Set-Go has three phases and
two change points) (Koepcke, Ashida, & Kretzberg, 2016; Alt,
Messer, Roeper, Schneider, & Koeppl, 2018). However, there
is a lot less work that examines the detection of changes in
multi-neuron recordings during naturalistic behavior, where
many different types of CPs can occur without any prompt or
warning. In these cases, we need methods that can detect any
number of diverse types of shifts that occur in the brain.

In this work, we establish a new metric learning approach
for detecting change points in neural population activity. Our
method relies on a contrastive learning approach to learn a
metric where samples on different sides of a labeled change
point are repelled from one another and nearby points on one
side of a change point are brought closer.

We apply our method to a 12 hour block of neural activity
from hippocampus and show that we can better detect sleeping
states and behavior from a small amount of labeled data. Criti-
cally, our method is also interpretable and can be used to reveal

which neurons or interactions between neurons are important
for revealing certain types of shifts in the population states.
Our results suggest that by coupling metric learning with a
contrastive sampling mechanism, we can build interpretable
measures of shifts in brain state over long time periods.

Methods

Dataset description. To study change point detection over
long timescales and in naturalistic settings, we curated a
dataset containing a 12 hour recording of behavior and neural
activity data from the hippocampus of a mouse during free
behavior. We spike-sorted the neural data with MountainSort
(Chung et al., 2017; Buccino et al., 2020), then binned 42
neurons using 4-second windows resulting in a total of 10,800
samples of the population firing rates.

During the experiment, the animal moves in and out of dif-
ferent sleeping stages and natural behaviors. We performed
sleep-scoring to obtain arousal states (wake, sleep REM and
sleep nREM) using the recorded local field potentials (Ma, Tur-
rigiano, Wessel, & Hengen, 2019). We also annotated the
discrete behaviors of the mouse through a manual tagging
and analysis of the in-cage video (running, moving in place,
standing still) that is recorded simultaneously.

Approach. To detect CPs, we use an online approach which
selects a window before and after a sample of interest, and
computes a measure of divergence between both windows
before proceeding to the next sample in time. By streaming
through the data and computing the divergence in this manner,
we can generate a change point statistic which tells us the
likelihood that there is a change at a given point in time.

Methods like the Sinkhorn divergence can give more ro-
bust estimates of CPs (Cuturi, 2013; Cheng, Aeron, Hughes,
Hussey, & Miller, 2020). In such methods, a CP is detected
at time t when the Sinkhorn divergence SL,γ between the past
window X t

p and the future window X t
f is greater than a set

threshold τ (e.g. (SL,γ(X t
p,X

t
f )≥ τ).

Here, we propose to extend this general approach by using
some supervised data to learn a metric to better detect change
points of interest. This metric can be used and plugged into
our Sinkhorn divergence and then used in an online manner.

We use change point labels to divide the sequence such that
sub-sequences on the same side of a change point are consid-
ered to be a similar pair while sub-sequences on opposite sides
of a change point are considered to be a dissimilar pair. These
similar, dissimilar pairs are used to obtain triplets (X i,X s

i X
d
i ),

which are used to learn a sparse metric L by minimizing

l(L) = ∑
i∈Triplets

[
c− (SL,γ(X i,Xd

i )−SL,γ (X i,X s
i ))

]+
+∥L∥1,

(1)
where SL,γ is Sinkhorn divergence equipped with this learned
metric, and c is triplet loss margin (Ahad, Dyer, Hengen, Xie, &
Davenport, 2022). The L-1 regularization term helps learn a
sparse metric which makes it easy to interpret what features or
neurons are responsible for driving different types of changes.
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Figure 1: Summary of results. We show the learned metrics for the sleep substates (REM/nREM on top A, sleep/wake on top B) and the firing
rate of the most relevant neurons in each (highlighted in red in learned metric above) at examples of change points (bottom A, bottom B). C
shows the change statistics for SinkDiv (top) SinkDivLM when metrics from both sleep/wake and REM/nREM are combined (bottom).

Results

As our dataset consists of distinct types of sleep state changes,
where each of these changes persists for different time scales
and is triggered by different neurons, it is difficult to learn a
single sparse metric that captures many diverse kinds of CPs
while also providing interpretability. To solve this, we learn two
metrics, one for sleep/wake transitions and one for REM/nREM
transitions (trained with 3 and 14 CPs, respectively), and com-
bine the two sparse metrics to detect changes in all 3 sleep
states with one model, by adding and normalizing them.

To show the improvements due to our metric learning
approach, we compare our method with SinkDiv, which is
Sinkhorn divergence without a learned metric. Since change
point detection performance is dependent on detection thresh-
old, we use area under the curve (AUC) as an evaluation metric
as it captures detection performance at different thresholds,
and is commonly used as a change point evaluation metric in
literature (Liu, Yamada, Collier, & Sugiyama, 2013).

The results in Table 1 show the mean AUC for the SinkDiv
baseline and our model, SinkDivLM. These demonstrate that
learning a metric is an improvement over the baseline, since
the score increases from 0.58 to 0.85 in the sleep/wake case
and from 0.92 to 0.95 in the case of REM/nREM. As well, the
combination of these metrics raise the score for identifying the
changes among the 3 arousal substates, REM/nREM/wake.

Interestingly, SinkDivLM trained on sleep/wake labels does
not outperform SinkDiv when tested with REM/nREM/wake
labels but in the opposite case it does. A possible reason for
this is that the neurons responsible for REM/nREM changes
(6 and 15, as seen in Figure 1A) are shadowed by others in
the sleep/wake metric, making the identification of these CPs a
challenging task. However, the learned metric for REM/nREM
attributes high relative importance to neurons 13 and 15, which
are also relevant for the detection of sleep/wake changes.

Table 1: AUC of change point detection for SinkDiv baseline and
SinkDivLM model reported on test sets with different truth CP labels.

SinkDiv SinkDivLM

Trained on sleep/wake
Sleep/wake 0.58 0.85
REM/nREM/wake 0.79 0.72
Trained on REM/nREM
REM/nREM 0.92 0.95
REM/nREM/wake 0.79 0.82
Combined sleep metrics
REM/nREM/wake 0.79 0.85

Trained on running/no running
Running/no running 0.51 0.65

To check whether the learnt Sinkhorn divergence metric
could identify changes not only in arousal states but also in
complex behavior, a high level behavior label (running) was
isolated. The model was trained on the 3 points where the
mouse started or stopped running (running/no running). In
Table 1, we visualize how, as in the case with sleep CPs,
SinkDivLM reaches a much higher AUC than SinkDiv.

Conclusion
In this paper, we show that contrastive metric learning improves
the performance of change point detection in two kinds of
neural shifts: arousal states and natural behaviors. In addition
to improving CP detection, a highlight of our approach is that
it provides interpretability at the scale of neurons and local
sub-circuits (interaction between neurons through off-diagonal
components in learned metric). Such a tool has the potential
to infer which behavioral changes are encoded in certain areas
of the brain. These findings suggest a promising new direction
towards building a tool for neuroscientists to analyze changes
in neural activity during complex behavior.
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